Spatial and temporal effects of axial structures on myogenesis of developing somites
نویسندگان
چکیده
To elucidate the precise roles of axial structures in the myogenic differentiation of the somite, we have examined the effects of the axial organs' precise spatial position during migration and differentiation of somitic cells by using in vivo transplantation of the neural tube and of the notochord directly into the paraxial mesoderm. Differentiation of myotomal cells was identified through the use of Quox 1 antibody which recognizes specifically a quail homeoprotein Quox 1. We have demonstrated that both ectopic neural tube and notochord are able to influence the myogenesis in somites, but that the spatial position of axial organs and the degree of somite maturation at grafting time are decisive. At the level of the somites which were already formed and developmentally advanced (somites III-VI), both neural tube and notochord promote myogenesis, and the promoting effect of notochord is more efficient than that of the neural tube. In the newly formed somites (I-II) and/or the segmental plate mesoderm, the notochord inhibits the myogenesis of somites, whereas the neural tube plays an evident myogenic promoting role. But the myogenic effect of the neural tube depends not only upon the stage of developing somites and presomitic mesoderm, but also on the developmental maturation of the neural tube. We have demonstrated that the myogenic effect of the rostral part of neural tube is stronger than that of its caudal part. This observation suggests that there is a gradient of myogenic effect along the rostrocaudal axis of the neural tube, which depends on the developmental maturation of neural tube, and that the generation of skeletal muscle during somitogenesis may be in relation with the rostrocaudal gradient of the capacity of the neural tube to stimulate myogenesis since somites are also distributed along an anteroposterior axis.
منابع مشابه
Myogenic specification in somites: induction by axial structures.
Specification of the myogenic phenotype in somites was examined in the early chick embryo using organotypic explant cultures stained with monoclonal antibodies to myosin heavy chain. It was found that myogenic specification (formation of muscle fibers in explants of somites or segmental plates cultured alone) does not occur until Hamburger and Hamilton stage 11 (12-14 somites). At this stage, o...
متن کاملSpecification of the myogenic phenotype in somites was examined in the early chick embryo using organotypic explant cultures stained with monoclonal antibodies to myosin
Inductive interactions play key roles throughout early development of vertebrate embryos. Indeed, the formation of one of the three germ layers in amphibia, the mesoderm, is the result of an inductive interaction between the animal and vegetal hemispheres of the embryo (Nieuwkoop, 1969). Later in development, inductive events are required for the formation of many of the tissues and organs of t...
متن کاملMediolateral patterning of somites: multiple axial signals, including Sonic hedgehog, regulate Nkx-3.1 expression
The axial structures, the notochord and the neural tube, play an essential role in the dorsoventral patterning of somites and in the differentiation of their many cell lineages. Here, we investigated the role of the axial structures in the mediolateral patterning of the somite by using a newly identified murine homeobox gene, Nkx-3.1, as a medial somitic marker in explant in vitro assays. Nkx-3...
متن کاملKlhl31 is associated with skeletal myogenesis and its expression is regulated by myogenic signals and Myf-5
Klhl31 is an orthologue of Drosophila Kelch and belongs to a family of Kelch-like proteins in vertebrates. Members of this family contain multiple protein domains, including an amino-terminal broad complex/tram-track/bric-a-brac (BTB) or poxvirus and zinc finger (POZ) domain, carboxy-terminal Kelch repeats and a central linker region. We show that Klhl31 is highly expressed in the developing he...
متن کاملDifferential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5.
Activation of myogenesis in newly formed somites is dependent upon signals derived from neighboring tissues, namely axial structures (neural tube and notochord) and dorsal ectoderm. In explants of paraxial mesoderm from mouse embryos, axial structures preferentially activate myogenesis through a Myf5-dependent pathway and dorsal ectoderm preferentially through a MyoD-dependent pathway. Here we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 60 شماره
صفحات -
تاریخ انتشار 1996